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Self-diffusion coefficients were determined experimentally for lateral dispersion 
of spherical and disk-like particles in linear shear flow of a slurry a t  very low 
Reynolds number. Using a concentric-cylinder Couette apparatus, recurrent 
observations were made of the lateral position of a particular radioactively 
labelled particle. The self-diffusion coefficient D was calculated by means of 
random-walk theory, using the ergodic hypothesis. Owing to great experimental 
difficulties, the calculated values of D are not of high accuracy, but are correct 
to  within a factor of two. I n  the range 0 < 4 < 0.2, D/a2w increases from zero 
linearly with Q up to D/a2w z 0.02 (where q5 = volumetric concentration of 
particles, a = particle radius, w = mean shear rate of suspending fluid). In  the 
range 0.2 < Q < 0.5, the trend of D/a2w is not clear because of experimental 
scatter, but in this range D/a2w 2 0.025 to within a factor of two. Within the 
experimental accuracy, spheres and disks have the same value of D/uZw. 

1. Introduction 
DeJinition of the problem 

A slurry is a relatively concentrated suspension of solid particles in a liquid. 
Suspensions may also consist of solid or liquid particles in a gas. As the particles 
are usually small relative to the size of the flow apparatus, certain average bulk 
properties of the mixture, such as density, effective viscosity and effective 
conductivity, are of obvious interest and importance (Goldsmith & Mason 
1967; Brenner 1970; Batchelor 1974). Here we are particularly concerned with 
the fact that in a suspension flow the fluid-mechanical interactions among 
neighbouring particles produce irregular motions. Among these motions are 
lateral migrations from the instantaneous average trajectories, which produces an 
overall effect of dispersion. 

The objective of the research reported here was an experimental determina- 
tion of the self-diffusion coefficient characterizing the lateral migrational fluxes, 
under the especialIy simple conditions of an infinite linear shear flow. 
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Practical signijicance 

In  industrial applications, suspensions provide an economical way of trans- 
porting large quantities of solid particulate materials. Well-known examples 
include coal and ore transport in mines and processing plants, pulp handling 
in paper manufactwe, transport of powders in cement plants and the motion 
of particles in fluidized beds. 

The most ubiquitous - indeed the most vital - slurry is blood, which contains 
within a suspending plasma a high volume fraction ( N 0.4) of particles (mainly 
red blood cells, but also platelets and white cells). Self-diffusion of the particles 
in blood is of great importance in at least three respects. 

(i) I n  extracorporeal devices, red cells are haemolysed when they come into 
contact with artificial surfaces. 

(ii) The formation of clots, or thrombi, is in part determined by the diffusional 
fluxes of platelets to the walls. 

(iii) Since oxygen is largely transported by attachment to the haemoglobin 
of red cells and subsequent movement of the red cells, the self-diffusion of red 
cells produces augmented diffusion as, for instance, in blood oxygenators. Self- 
diffusion moves oxygen-saturated red cells to unsaturated regions; this ' bucket 
brigade' produces an increased rate of mass transfer. 

The rheological and diffusive behaviour of blood presents the additional 
complications of deformability of the particles and of protein linkages at low 
shear rates, both producing non-Newtonian behaviour (Merrill et al. 1963; 
Whitmore 1963; Fung 1969; Copley 1966; Charm 1974). 

How diffusive-type lateral migrations arise 

Particle motions perpendicular to the local direction of flow may arise from 
three sources (Cox & Mason 1971): (i) mutually induced velocity Jields during a 
shear flow (Goldsmith & Mason 1967; Karnis, Goldsmith & Mason 1966a), 
(ii) Zift forces (Segre & Silberberg 1962; Ho & Leal 1974; Wohl & Rubinow 1974; 
Karnis, Goldsmith & Mason 19663) and (iii) body forces, e.g. gravity or centri- 
fugal forces. 

Motions due to lift and body forces can be present even in very dilute suspen- 
sions. They are not stochastic, and are best quantified in terms of a drift speed 
rather than by a self-diffusion coefficient. 

Only those particle migrations associated with mutually induced velocity 
fields are the object of study here. These produce self-diffusion even in an infinite 
linear shear flow of uniform concentration, and in the absence of buoyancy 
forces, nonlinear shear, fluid inertia and wall proximity. The essential require- 
ment is that the particle concentration be sufficiently high to result in a sig- 
nificant number of multi-particle interactions. 

A simple, linear shear flow of a suspension continually produces two types of 
interaction, both of which contribute to lateral migrations. 

(i) Each particle rotates with an angular velocity approximately half the 
mean shear rate of the fluid (Jeffery 1922). Because of viscous entrainment a 
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circulatory fluid motion is established around the particle, thereby creating a 
velocity field that exerts drag forces on neighbouring particles. (ii) Each particle 
overtakes and passes particles on neighbouring but slower-moving mean stream- 
lines, and is passed by particles on faster-moving mean streamlines. In  such 
passing encounters or ‘collisions’ (usually without contact), each particle moves 
in the velocity field of its neighbours. With only two particles present and far 
from bounding walls, a passing encounter at  zero Reynolds number is sym- 
metrical: neither particle experiences a net lateral displacement, even though 
there may be large temporary displacements as the particles move to avoid each 
other during the passing event. With many particles present, the beginnings 
and ends of the multiple passing interactions overlap and are indistinct, but the 
important fact is that net lateral displacements do occur (Goldsmith & Mason 
1967). 

Representation of the phenomenon as self-diffusion 

We make the plausible supposition that the arrangement of particles which are 
near neighbours is a continuously changing random event. Then, since both 
contributions to the lateral migrations, i.e. the rotational and the translational 
contributions, are created by many successive inputs, with each input arising 
from a different random arrangement of neighbours, the self-diffusion of the 
particles should exhibit the type of statistical behaviour associated with random- 
walk processes. Accordingly, the dispersive behaviour may be characterized 
quantitatively by Pick’s law of diffusion in terms of a coefficient of self- 
diffusion. 

Considered in this light, the self-diffusion of particles in shear flow of a slurry 
resembles both the molecular collisions that give rise to ordinary diffusion in a 
gas and the fluid-mechanical events that produce dispersion and mixing in a 
turbulent flow. Both analogies, however, while somewhat helpful as an aid to 
thought, are imprecise. The physical phenomena involved are quite different 
for the three cases, although Buyevich (1972) attempted to calculate shear- 
induced dispersion in slurries through an analogy with turbulent flow. 

Dimensional analysis 
A given flow geometry, e.g. a pipe or slit flow, or a cylindrical Couette flow, may 
be characterized by a typical width w. Let the local shear rate be w = au/ay 
at the distance y from the wall. We consider cases where the mean flow is approxi- 
mately rectilinear on the scale of the inter-particle spacing, so that it may be 
characterized by an average velocity profile u(y ) .  Then, with respect to particle 
interactions, the local mean flow at y is determined by the successive derivatives 
au/ay, a2u/8y2, . . . . For nearly linear shear flows, one presumably need not go 
beyond a2u/ay2. Additional variables entering the diffusive behaviour are the 
particle radius a, the average volumetric concentration 9, the fluid viscosity p, 
the mass density of the fluid pf and the net body force, which is proportional 
to g(p, -p f )  a3, where g is the body force per unit mass (gravitational, centrifugal, 
etc.) and ps is the mass density of the particles. 

13 F L M  79 
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The average coefficient of self-diffusion D is governed by the foregoing quanti- 
ties through the implicit physical relationship 

D = ~ [ ~ , a , ~ , ~ , w , a 2 ~ / a y 2 , 1 ~ , ~ ~ , ~ ( p , - p ~ ) a 3 1 .  (1) 

Dimensional arguments reduce this to 

The geometric parameters a/w and a/y are obviously relat,ed to wall inter- 
ference effects. The term pf a2w/p is the appropriate Reynolds number of the flow 
relative to a particle when the slip velocity is very small; it  also governs the rate 
of decay of a non-equilibrium slip velocity. The group aa2u/ay2/w is a measure 
of the fractional change in shear rate over a distance of one particle radius; 
if this term is nonzero, an equilibrium slip velocity as well as a transverse 
lifting force is produced (Ho & Leal 1974). The last dimensionless parameter, 
g(p, - p f )  a/,uw, is a measure of the ratio of the settling speed (in the direction of g )  
produced by the unbalanced body force to the speed w a  characterizing the local 
shear flow relative to a particle. 

Objective and scope 

Even in a pipe flow, a multitude of complex and interacting phenomena enter. 
The nonlinear velocity profile produces tranverse lift forces. This, together with 
interference effects near the walls, results in a non-uniform distribution of particle 
concentration. The consequent gradient of concentration influences the diffusive 
effects due to particle interactions. Experiments in pipes and channels, because 
of the presence of such multiple and interacting phenomena, are difficult to 
interpret, particularly with respect to determination of the coefficient of self- 
diffusion. Experiments with blood have additional complications owing to the 
deformability of the red cells, leading for instance to an apparent non-Newtonian 
viscosity. 

It was our objective to perform experiments in which self-diffusion is the 
dominant physical phenomenon, essentially free of other effects. As described 
later in more deta.il, the experiments were performed in a cylindrical Couette 
apparatus having a small ratio of gap width to mean radius, using small, virtually 
neutrally buoyant particles suspended in a very viscous oil. Measurements were 
made only in the central region of the gap, where the velocity profile was nearly 
linear and the concentration nearly uniform. Under the experimental conditions, 
all the independent dimensionless parameters in (2) except $$ were quite small. 
If each were truly zero, the problem would be that of an infinite, inertia-free, 
two-dimensional, neutrally buoyant, linear shear flow, with the particle migra- 
tions wholly governed by self-diffusion of the type described earlier. In  that case 
(2) would reduce to 

D/a2w = g[q5], (3) 

a situation to which the experiments approximated. 
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The experimental investigations were carried out by Eckstein (1976), using 
rigid spheres, and Bailey (1975), using rigid discoids, whose theses may be 
consulted for fuller details than can be presented here. 

2. Related investigations 
Quantitative information concerning the self-diffusion coefficient in a linear 

shear flow is virtually non-existent. Experimental studies have not been aimed 
towards this goal, and not even the beginnings of a workable theory are available 
to model the complex phenomena involved. However, various related studies 
reported in the literature bear more or less upon the present investigation. 

Individual particles in a shear flow 
Brenner (1963) and Happel & Brenner (1973) describe well-established results 
for single neutraIly buoyant particles. In  an unbounded linear shear flow the 
particle’s speed is that of the streamline at  its centre, and its angular velocity is 
half the fluid shear rate (see also Jeffery 1922). Proximity to a solid boundary 
reduces both the convective speed and the angular velocity. In  an inertia-free 
flow, a rigid particle experiences no lift force even near a solid boundary, in 
accord with the principle of kinematic reversibility (Bretherton 1962; Cox & 
Mason 1971). However, with significant inertial effects, i.e. at non-zero particle 
Reynolds number, the interference effect of the wall does yield a lift force. 
Deformable particles or immiscible liquid droplets experience lift forces what- 
ever the Reynolds number. Lift forces on rigid particles are smaller than those 
on similar deformable particles or droplets. 

Concentrated suspensions in shear flow 
Experiments in cylindrical Couette flows and in Poiseuille flows are reviewed 
by Goldsmith & Mason (1967). While a two-particle interaction produces no net 
lateral migration in a linear shear flow, observation shows that net lateral 
migrations do occur when three or more particles are present (Karnis et al. 
1966a). The dispersive-type motions increase greatly as the volumetric con- 
centration of particles increases from dilute values. Kinematic reversibility, 
which bears a close relationship to dispersive particle migrations, fails above a 
Reynolds number pra2w/,u of This is much smaller than one would expect 
if, say, the velocity field or the drag, both instantaneous quantities, were the 
quantities of interest. However, the return of a particle to its initial position 
when the flow is reversed relates to an integral measure which can be substantially 
affected by small but cumulative deviations. 

Couette Jlows. Observations by Karnis et al. ( 1 9 6 6 ~ )  showed that the con- 
centration within a Couette channel in an inertia-free flow is virtually uniform, 
except for a ‘Vand zone’ of low concentration near each wall (Vand 1948). The 
velocity profile, however, is of complex shape: it consists of an essentially linear 
central region bounded by regions of much higher shear rate in the Vand zones. 

13-2 
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This shape results from the combination of a nearly constant shear stress across 
the entire gap and an effective viscosity that is non-uniform owing to the defi- 
ciency of concentration in the Vand zone. 

Poiseuille Jlows. When a low-concentration suspension of neutrally buoyant 
particles issues uniformly from a reservoir into a tube, the particles migrate 
radially and ultimately assume a stable position at  a radius of approximately 
55 yo of the tube radius (SegrB & Silberberg 1962). The suspensioq is relatively 
depleted of particles near the wall and in the centre (Cox & Mason 1971). The 
' Segre-Silberberg effect ' involves a balance between two competing transverse 
lift forces: that arising from curvature of the velocity profile and that owing to 
inertial effects in the presence of wall interference (Ho & Leal 1974). Flows of 
neutrally buoyant suspensions a t  high concentrations have been the subject of 
visual studies by Karnis et al. (1966b) and by Sacks & Tickner (1967). Above a 
tube Reynolds number of 10, a slurry of high concentration exhibits plug-flow 
behaviour in the centre bounded by a high shear flow in a wall region depleted of 
particles. The lateral migrational motions in the plug portion of the flow are 
much smaller than in the wall region of high shear. 

Augmented diffusion in blood $ow 
In  considering the results of experiments on thrombus formation in a stagnation- 
point flow, Petschek & Weiss (1970) postulated a shear-driven diffusion of the 
platelets, presumably by action of the red cells. Experimental attempts to relate 
wall-induced haemolysis to the self-induced diffusion of red blood cells in tube 
flows were made by Bernstein, Blackshear & Keller (1967) and by Steinbach 
(1 974), with somewhat puzzling results, perhaps due to the inherent complexities 
of tube flows of suspensions, discussed earlier, as well as to the effects of the great 
flexibility of red cells. In  experiments using the method of Taylor (1953) to 
measure the diffusion of platelets, Turitto, Benis & Leonard (1972) found the 
diffusion coefficient in a flowing system to be much larger than the molecular 
diffusion coefficient of a static suspension. Grabowski, Friedman & Leonard 
(1972) investigated the effect of the shear rate on platelet-thrombus formation 
in the presence of red blood cells. 

The diffusive migration of red blood cells in a shear flow and the associated 
augmentation of diffusive transport of dissolved species in the plasma offer a 
potential method for significantly reducing the size of blood oxygenators 
(Colton 1976; Collingham 1968; Diller 1974; Keller 1971; Hill et al. 1974). 

3. Experimental apparatus 
General considerations 

Although self-diffusion in a slurry is known to occur, the experimental determina- 
tion of the coefficient of self-diffusion imposes formidable difficulties. In  a 
developed pipe flow, for instance, there are the complications of a non-uniform 
concentration (due to the Vand zone and the SegrbSilberberg effect) and a 
nonlinear velocity profile. Even in a simpler flow, how can one make observations, 



Self-diffusion of particles in shear flow of a suspension 197 

in a cloud of supposedly identical particles, from which any sort of self-diffusion 
coefficient may be extracted Z 

Our desire was to approximate as nearly as possible the most elementary 
circumstances in which self-diffusion is the dominant feature. This is an un- 
bounded linear shear flow of a slurry of rigid particles neutrally suspended in a 
Newtonian fluid at uniform concentration, with inertial effects negligible. The 
chief elements in the experimental plan were a cylindrical Couette device having 
a small gaplradius ratio, a suspension of small plastic particles in a very viscous 
oil matched to the density of the particles, and a system for detecting the lateral 
position within the Couette gap of one tracer particle that had been labelled 
radioactively but was otherwise similar to the other particles. 

The selection of dimensions, rotational speeds, viscosities, densities, etc., was 
governed by the restrictions implied by the simple relation (3), as well as by 
considerations of practicality and convenience. These restrictions and con- 
siderations produced in the eventual design the following ranges or values of the 
independent dimensionless parameters in ( 2 )  : 

C$ = 0.054 to 0.50, 

pfoa2/,u = 4 x  10-4 to 10-2, 

Ig(p,-pf)a/,uwI = 0.004 to 0.06, 

a/w = 0.02 and 0.06, 

a/y = 0.05 and 0.15 (approx.). 

The value of aa2U/ay2/o is difficult to establish. However, from the results of 
Karnis et al. (1966~) it was possible to estimate the size of the wall regions, and 
thus of the region where the velocity profile is virtually linear. Accordingly, 
only migrations of the marked particle originating in the central fifth of the 
channel width were used for calculating D, and it is believed that the associated 
values of a a2u/ay2/o were sufficiently small to be considered essentially zero. 

The ratios listed above are a compromise between the ideal of (3) and what 
is practically realizable. Although the parameters in ( 2 )  (except for 4) may have 
not been rendered wholly inconsequential, they are deemed to have had a 
relatively weak influence on the measured value of D. 

The concentric-cylinder Couette apparatus 
The Couette apparatus was of conventional design, but constructed with a 
high degree of mechanical accuracy. The significant dimensions were inner 
diameter = 10*98in., outer diameter = 13*05in., gap width = 1.053in. and 
maximum possible fluid height = 9.8in. The bottom rotated with the outer 
cylinder, and the upper horizontal surface of the slurry was in contact with air. 
Except for the experiment with w = 0-4s-1, the inner cylinder was stationary. 
For o = 0.4 s-l, both cylinders rotated, the speed of the outer cylinder being the 
same as in the experiments having o = 1.0 s-1. 

In  rotating Couette devices, the existence of a boundary layer on the floor 
leads inevitably t o  a toroidal secondary circulation in a diametral plane. Such 
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a secondary flow, unless exceptionally small, would be disastrous for the present 
experiment, as it would cause first-order particle displacements that could easily 
mask the second-order shear-induced migrations. In  order to render the secon- 
dary flow negligible, a layer of ‘Fluorinert’ (3M Co.) about 4.5in. deep was 
placed at  the bottom of the Couette chamber. This totally fluorinated hydro- 
carbon is 65 yo more dense than the slurry used (thereby minimizing instabilities 
and wave formation at the interface) and, most important, is at least 1000 times 
less viscous. Thus, because the shear stress is continuous at  the interface, the 
secondary flow was in effect confined to the Fluorinert layer. The air-slurry 
interface acted in a similar manner to prevent secondary flow within the slurry. 

Furthermore, in order to avoid thermal convection currents, the entire 
apparatus was operated in a thermostatically controlled room. 

With these precautionary steps, no secondary or thermal flow effects could 
be detected in 2 h observations of a simple, small, neutrally buoyant particle 
moving in the viscous suspending fluid. 

The slurries 

In  the experiments with spheres, the water-soluble artificial oil used, Ucon 
50-HB-5100 (Union Carbide), was diluted with water until the fluid and particle 
densities matched to within less than 0.002 g/cm3. At this condition, the viscosity 
of the solution was 2100 CP at  70 O F .  I n  the experiments with disks the match 
was not quite as good. 

Two sizes and two shapes of polystyrene particles were used. By means of a 
complex and difficult procedure, one of each type of particle was labelled with a 
sufficient amount of 5 8 C ~  so that it could be detected through the emission of 
810KeV gamma rays. 

‘Large’ spherical particles. These were commercially manufactured by centre- 
less grinding to diameters of 0.125 * 0.002 in. 

‘ Small ’ spherical particles. These were commercially produced by polymeriza- 
tion of drops in suspension. The particles used in the experiments were selected 
by sieving. Approximately 95 % of the particles had diameters between 0.038 
and 0-045 in. 

Disk-like particles. These were stampings from polystyrene sheet, with 
dimensions 2a = 0.121 & 0.001 in. (approximately the diameter of the ‘large’ 
spheres) and h = 0.021 f 0.003in. (a  = radius, h = thickness), and with a density 
ps = 1.057 g/cm3. Since the ratio h/2a E 0.17, the disks were ‘thin’. 

Scheme for determining D 
Recurrent observation of the position of a single marked particle as time proceeds 
permits a coefficient of self-diffusion to be calculated if one adopts the ergodic 
hypothesis. Because of the stochastic nature of the lateral migrations, the 
statistical behaviour over a sufficiently long time of one particle in a cloud of 
particles represents also the statistical behaviour of the entire cloud of particles 
over a short time. This is so because the marked particle at  various later times 
occupies all the current positions of the particles making up the cloud. 
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It would have been advantageous to observe the lateral position of the radio- 
active particle within the Couette gap a t  uniform time intervals (neither too 
long nor too short, as explained later). To do this with adequate positional 
accuracy was not feasibIe without great complication of the apparatus. In  the 
method adopted, the particle was observed only as it passed through a 'viewing 
window' occupying a small circumferential arc of the Couette annulus. By thus 
reducing the area of observation, the accuracy of determining lateral position 
was enhanced, but with the disadvantage that the time intervals between 
successive observations of the radioactive particle were not uniform and thus 
had to be measured. 

Detection system 
Each time the marked particle passed through the arc of the viewing window, 
a scintillation detector was activated, and data giving the lateral position of the 
particle within the gap and the time elapsed since the previous observation were 
recorded on tape. 

The apparatus is shown schematically in figures 1 (u)-(c). For clarity, almost 
all the lead shielding has been omitted from the figures. Only the shielding 
making up the sides of the collimating slit,s in the rotating lead wheel P is retained 
in the figures. Additional lead shielding, not shown, protected the scintillation 
detector A from radiation not passing through the viewing slits. 

Figure 1 ( c )  which is a sectional top view of figure 1 (a) ,  shows the lower half 
of the rotating lead wheel, which contained the successive collimating slits through 
which the labelled particle could be viewed. The vieuping slits were sufficiently 
spaced that only one slit could be over the Couette gap. As the lead wheel rotated, 
a small circumferential arc of the Couette annulus was repeatedly scanned by 
the slits, one at  a time. 

The scintillation detector A was placed directly over the viewing arc of the 
Couette annulus. Gamma rays emitted by the radioactive particle had a relatively 
decay-free path to the detector only when the lateral position of a viewing slit 
corresponded to the particle position. An electrical signal was generated in 
response to the high rate of gamma-ray counts registered by the radiation 
electronics whenever a slit was positioned directly over the radioactive particle. 
Measurement of the slit location thus determined the location of the radioactive 
particle. 

As each collimating slit approached the Couette annulus, a light beam from 
the He-Ne laser B ,  after 90" reflexion by the mirror H ,  passed through the 
collimating slit to the photodiode D.  Since the laser beam was fixed relative to the 
apparatus, the electrical signal from the photodiode established a reference 
location for the subsequent measurement of the position of the marked particle. 

The electrical signal from the photodiode zeroed an electronic stop-watch, and 
the radiation-induced signal from the scintillation counter caused the stop- 
watch to record the time when the marked particle was observed. From the 
elapsed time (the lateral distance from the laser beam to the particle divided 
by the speed of the collimating slit) and knowledge of the location of the walls 
of the Couette gap relative to the laser beam (found by a preliminary calibration), 
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FIGURE 1. For legend see facing page. 
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FIGURE 1. The Couette device and the detection apparatus. A,  scintillation counter; B, 
He-Ne laser; C ,  Couette device; D, photodiode; E, steel frame; P ,  lead wheels with col- 
limating slits; G, shelf for lead shielding (the latter not shown); H ,  90°-turn mirror; I ,  belt 
drive for outer Couette cylinder. (a) Front view. (b )  Side sectional view (section A A  of a).  
(c) Top view (section BB of a), showing only the outline of the Couette device and the 
lowermost 1ea.d wheel with collimating slits. 

the position of the labelled particle relative to the walls of the Couette gap 
could be determined. 

In  addition to the scintillation counter, the radiation detection equipment 
included a spectrometer which filtered out pulses produced by gamma rays 
outside the SlOkeV band. 

Co-ordinating electronics 
An electronic interface, constructed principally from transistor-transistor-logic 
integrated circuits, processed the outputs of the spectrometer and photodiode, 
co-ordinated two stop-watch timers and prepared a coded output for a teletype. 
The interface acted as a small dedicated computer controlling the moment-to- 
moment collection of data. 

The counts filtered through the spectrometer formed the input to a rate meter. 
The latter produced a pulse whenever the number of counts received in a 5 ms 
interval exceeded a preset threshold level. This pulse stopped two electronic 
stop-watches and also initiated automatic recording of the times on the teletype. 

The ‘position’ stop-watch measured the time for the collimating slit to move 
horizontally from the reference laser beam to the location of the marked particle. 
It was reset to zero by the photodiode each time a new collimating slit reached 
the laser beam and began to scan across the Couette gap. 

The ‘interval ’ stop-watch measured the time interval between successive 
observations of the marked particle. It was reset to zero, and immediately 
restarted, when the counter sent a signal to memory that the marked particle 
had been detected. 
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Control and multiplexing circuitry integrated the functions of the electronic 
components with the teletype to provide automatic recording of observations. 
When the rate meter signalled a ' hit' as a collimating slit passed over the marked 
particle, several actions were simultaneously initiated: (i) the times of the two 
stop-watches were recorded in their respective memory sections; (ii) the interval 
stop-watch was zeroed and restarted (the position stop-watch was rezeroed by 
the photodiode); (iii) a code-conversion section translated the internal electronic 
signals into a form which could be recorded on paper tape through the teletype; 
(iv) an interlock prevented numbers recorded in the stop-watch memories from 
being lost while the teletype was producing the paper-tape record; and (v) a 
dead-time latch was set, preventing further observations until some minimum 
preset time had elapsed. The dead-time interval was made sufficiently great so 
that the current observation could be recorded by the teletype and also so that 
observations with very small lateral changes in particle position were avoided. 
The latter was important as a means of reducing certain sources of error which, 
as discussed later, would systematically produce erroneously large diffusion 
coefficients. 

4. Treatment of data 
Calculation of self-diffusion coeficient 

Using the techniques and apparatus described above, data for each run were 
accumulated in the form of a table of lateral changes in position Ayi and corre- 
sponding time intervals Ati. These data were treated as a series of random walks, 
at  least with regard to lateral migrations. For random walks in one dimension, 
with unequal time intervals Ati, the self-diffusion coefficient is given by (e.g. 
Chandrasekhar 19431 

where N is the number of observations. 
The observations used to form Ayi must be uncorrelated. This requires that 

many collisions occur during the time interval Ati, a condition that was met 
automatically since in all experiments (except with w = 0.4 s-l) the radioactive 
particle had to move around the Couette annulus to return to the viewing 
window for another observation. The number of collisions can be estimated by 
considering the change in registration of the elements of a cubic crystalline array 
being sheared. The number of collisions is simply the number of elements 
passed, i.e. wAti. In  these experiments the number of collisions between observa- 
tions is of the order of 100 or more, using the time interval described 
subsequently. 

Straightforward as the experimental procedure may be in concept, it  was 
fraught with practical difficulties, and contained pitfalls that could easily lead 
to spurious results. Only by careful consideration of the various sources of error, 
by appropriate procedures in both the taking and the treatment of data to cope 
with these and by a variety of calibrational and theoretical estimates of error 
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magnitude was it possible to arrive at values of D which do indeed represent 
self diffusion and which are reasonably correct in magnitude. 

The major considerations of error are outlined briefly below (for full details 
see Eckstein 1975). 

Systematic error8 

These are principally in the determination of the shear rate w and the concentra- 
tion q5 in the central region of the channel where the migrational observations 
were made. Errors in w and q5 are greater for the larger particles, since the latter 
produce wider wall zones where the concentration is lower and the shear rate 
higher than the respective average values. 

Apparent shear rate. The values of w used in reducing the data were based on a 
linear variation of fluid speed between the inner and outer walls. This neglects 
the rather small curvature in the velocity profile that would occur even with a 
homogeneous Newtonian fluid because the gaplradius ratio is not zero. More 
important, it neglects the fact that the shear rate in the centre is less than 
the average because of the regions of high shear near the walls. From the data 
of Karnis et al. (1966a), it is estimated that the associated error in D/a2w is not 
more than 20 yo even for the tests with the larger particles. 

Apparent volume concentration. The values of q5 reported are the average for 
the entire slurry. In  the central region of the channel where the diffusion measure- 
ments were made, the actual concentration is higher than the average. Using the 
assumption of a Vand-zone depleted layer one particle radius in width, the error 
in q5 is estimated to be about 15 yo for the larger particles and only a few per cent 
for the smaller particles. 

A particular error with the small spheres. Although the radii of the small 
spherical particles ranged from 0.019 to 0.023 in. difficulties in fabrication caused 
the radioactively labelled sphere to be somewhat larger, of radius 0.026 in. The 
results were calculated using a = 0.023 in. For this and other reasons discussed 
later, the results with the small spheres are not as reliable as those with the large 
spheres. 

Random errors 

These may be divided into two classes. The ‘sighting’ error is the customary 
difference between the actual position of the labelled particle and the position 
reported by the detector, and incorporates the usual errors of observation. 

The second source of random error, the ‘passing’ error, is somewhat unusual. 
A s  the labelled particle successively passes (or is passed by) other particles, it 
executes an erratic, meandering motion. A portion of the lateral displacement is 
temporary (as exemplified by the isolated two-particle collision) and is lost at  
the conclusion of the encounter. Incorporation of this temporary displacement 
into the position observation would produce a spuriously high value of Ayd with 
regard to self-diffusion. The values of Ayi to be used in (4) should be based on an 
average trajectory free of temporary lateral displacements due to passing 
encounters. Since there is no way of separating out the temporary passing 
displacements, it is important to recognize that, as the time interval Ati increases, 
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the scale of the ‘true’ diffusive Ayi increases in proportion to (At,):, whereas the 
contribution of the ‘passing’ error t o  Ayi remains constant. 

Let the observed position yobs of the particle be expressed as 

Yobs = Ytrue + Ypass + Ysightr 

where the last two terms represent the two sources of error discussed above. 
A corresponding expression holds for the respective Ay’s. Assuming that each of 
the Ay’s is random (the mean values are zero) and that they are independent of 
each other, substitution of (5) into (4) leads to  

where D,,,, is the correct value based on the values of (Ayi)true. 
Both contributions to the error in Ay,, regardless of their signs, increase the 

value of Dabs over the correct value Dtrue. 
Sighting errors. These are determined by (i) mechanical errors in alignment 

of the various components, (ii) the width and geometry of the viewing slits and 
the vertical position of the labelled particle, which determine the shape of the 
curve of count rate vs. time as the radioactive particle comes into view, (iii) 
the threshold count, rate set for an observational ‘hit’, as this is related to the 
aforementioned curve, (iv) the size of the finite time slices within which the 
counts are successively accumulated by the rate meter and (v) various small 
inaccuracies in dimensions, speeds, stop-watch times, etc. 

Observations were made of all particles attached at  various points on the two 
walls of the Couette device. This provided an absolute reference base for the 
position of the laser beam relative to the walls. Additionally, it  gave information 
on the statistics of the sighting error. The observed positions were centrally 
distributed around the mean, which was taken as the true position of the wall. 
For the large sphere and the disk, the breadth of the position distribution 
function was such that the observed position was accurate to within one particle 
radius in 95 yo of the sightings. For the small sphere, several reasons combined 
to make the accuracy less: to within one or two particle diameters in 80% of 
the sightings. 

Passing errors. These are most difficult to assess. Presumably the error (Ay)pass 
lies between zero and approximately 2a. As noted, the error in D diminishes as 
the time intervals Ati grow larger. Although very rough estimates of the passing 
error in D were made to ascertain that it was not disastrously large, the principal 
strategy used for coping with this vagary was to work with sufficiently large 
values of At,. 

Error as a function of time interval 

Although (6) reveals the dismal fact that the passing and sighting errors, even 
though random, produce errors in D in only one direction (they would produce 
a spurious value of D even if there were no true diffusion !), they may be rendered 
relatively small by making At, large enough, since both (AyJpass and (Ayi)sight 
are fixed in scale and independent of Ati. 
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The computer program which processed the data was capable of algebraically 
summing the values of (AyJobs and At, for a series of jumps, thereby yielding 
experimental data for jumps with successively larger At,’s. Thus it was possible 
to calculate Dabs for any allowed minimum interval At, = At: between observa- 
tions of the marked particle. 

For small values of At:, the computed value of Dobs is quite large, owing to the 
relatively weighty influence of the passing and sighting errors, as shown by (6 ) .  
As At: increases, these errors become less important, and Dobs decreases. In  
an infinite shear flow, Dobs would approach Dtrue as At:+co. But, because of 
the presence of walls in the apparatus, Ay, is bounded, so that Dobs would in fact 
approach zero as Atz-too. Long before this occurred, however, some of the 
particle positions would be within the wall layers. 

Clearly, then, in order to provide a good approximation to Dtrue, the value of 
At: should be chosen as large as possible without risking significant effects 
related to the walls. For calculating the values of Do,, presented here, the 
selection of At: in each experimental run was governed by several considerations: 
(i) At: was taken sufficiently large for the curve of Dobs vus. At: to have become 
relatively flat, thus indicating that the passing and sighting errors were within 
reasonable bounds; (ii) At: was not allowed to become so large that the dis- 
tribution of Ay$ failed a chi-square test for normal distribution, since such failure 
would indicate proximity to a wall; and (iii) At: was kept small enough so that 
the corresponding diffusion length (for the observed value of D )  was no greater 
than a modest fraction of the channel half-width. 

5. Results 
From the foregoing considerations of errors it became clear that D could not 

be established with a high degree of accuracy. Since the several sources of error 
could be assessed only roughly, and since they were at least partially self- 
cancelling, it did not seem advantageous to attempt corrections of the raw 
data. 

Thus the results finally presented in figure 2 are based on the average values of 
w and q5 as discussed previously, and were calculated with appropriate values of 
At: as described previously. We believe that the results shown in figure 2 are 
accurate to within a factor of two. While one might regret not having a higher 
level of accuracy, these results are believed to be significant for two reasons: 
first, they establish with reasonable certainty the order of magnitude of the self- 
diffusion coefficient for particles of equal size; and second no theory, not even 
a crude one, currently exists for this type of self-diffusion. 

The large scatter of data in figure 2 is due, we think, to the nature and size 
of the experimental errors rather than to the parameters in (2) neglected. There 
is no ordering with respect to particle Reynolds number. At a concentration of 
0.40, for instance, the uppermost and lowermost points have the two lowest 
Reynolds numbers. 

Noting that Dla2w must be zero when q5 = 0, figure 2 shows that D/a2w seems 
to increase approximately linearly with q5 up to about q5 0.2. Beyond this, the 
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FIGURE 2. Experimental results. 

A 0 a 0 0 
Particle Disk Disk Sphere Sphere Sphere Sphere 

a (cm) 0.16 0.16 0.16 0.16 0.16 0.05 

a2w (cm2 9-1) 0.256 0.0256 0.256 0.0256 0.0102 0.025 
w (9-1) 10 1 10 1 0.4 10 

scatter and inaccuracies preclude any conclusion as to the effect of q5. Perhaps 
the most one can now say for q5 > 0.2 is that D/a2w is of the order of 0.025. 

Finally, there seems to be no significant separation of the results for the 
spheres and the disks. For equal values of the major diameter, the self-diffusion 
coefficient appears to be similar in magnitude for these two quite different shapes, 
a result perhaps not unexpected from what we know of inertia-free flows. This 
is significant with regard to red blood cells, which are extremely complex in 
shape, but somewhat disk-like. One might also venture the guess that the varia- 
tion in shape of the red blood cell by reason of its deformability has little effect 
on D, but this is more uncertain. 
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